Древесина: свойства древесины различных пород. Значение древесины, состав, свойства, особенности и строение

Человек использует древесину с незапамятных времен. Топливо, строительные материалы, мебель, музыкальные инструменты - изделия из нее сопровождают нас всю жизнь. Кроме этого, деревья - это природные календари и живые исторические памятники.

Существует целая отрасль науки - дендрохронология, которая позволяет узнать возраст изделия, а также в какой области было срублено дерево, из которого оно было изготовлено. Изучая срезы годовых колец, можно узнать о природе и атмосфере давних времен. Достоинства и недостатки, строение, древесина как строительный материал, свойства - все эти вопросы заслуживают внимания.

Как все устроено

Свойства и характеристики материала невозможно понять, предварительно не изучив строение и состав древесины. Само понятие зависит от того, кто его употребляет. Для обычного человека и строителя это исключительно часть дерева под корой, которую можно употреблять в быту или производстве. Для ботаника и древесины - это весь комплекс, включающий в себя все элементы от корней до кроны.

Крона в промышленности используется незначительно, а ветви идут как сырье для и картона. Основное значение имеет ствол. На поперечном разрезе взору открывается строение ствола древесины. Самый верхний слой - кора, защищает живые клетки от внешних воздействий. Между корой и телом ствола располагается слой живых клеток - кадмий. В самом центре через весь ствол проходит сердцевина. Рыхлые ткани, из которых она состоит, делают ее непригодной для утилитарных нужд.

Ядро дерева состоит в основном из омертвевших клеток, отложений смолы, красящих и дубильных веществ. Ядро окружает заболонь - часть дерева, которая отвечает за проведение воды к листьям от корней. Соответственно, в ней много влаги, она больше пропускает воду и сильнее подвержена гниению. Ярко выраженное ядро есть не у всех деревьев. В некоторых из них нет разницы между центральной и окраинной частью ствола. Такие породы называются заболонными.

Микроскопическое строение древесины

Применяя микроскоп, можно глубже изучить строение. Древесина состоит в целом из омертвевших клеток. Молодые растительные клетки состоят из оболочки и внутренней части - цитоплазмы и ядра. Основой тонкой прозрачной мембраны является целлюлоза или клетчатка. С течением времени растительные клетки претерпевают метаморфозу и, в зависимости от заложенной функции, превращаются в своей массе либо в кору (пробкование), либо в древесину (одревеснение).

В клетках постоянно образуется лигнин. Он и служит причиной одревеснения. Разделяют два вида древесных клеток - прозенхимные и паренхимные. Первый вид составляет основную массу древесины, в зависимости от породы - от 85% до 99%. В свою очередь, они разделяются по своим функциям. Проводящие клетки отвечают за доставку питательных веществ и влаги от корней к листве, механические - за прочность и устойчивость дерева. Паренхимные клетки выполняют функцию кладовой для растения. Они накапливают питательные вещества (жиры, крахмалы) и отдают их по мере надобности в трудный период.

Хвойные породы

В зависимости от вида деревьев различается и их строение. Породы древесины делят на хвойные и лиственные. Строение хвойных пород отличается большей простотой. Основную массу составляют трахеидные клетки. К особенностям хвойных пород можно отнести наличие клеток, вырабатывающих смолу. У разных видов они могут быть как хаотично разбросаны, так и объединены в систему смоляных ходов.

Лиственные породы

Более сложны пород и их строение. Древесина состоит из сосудов, волокон либриформа и паренхимных клеток. Так как лиственные деревья сбрасывают осенью листву, зимой они нуждаются в большом запасе пищи. Отсюда и большее количество паренхимных клеток, отвечающих за накопление питательных веществ, чем у хвойных пород. Это можно увидеть по ярко выраженной сердцевине.

Свойства

Целым рядом характерным свойств обладает древесина. Особенности строения тому причина. Прочность у древесины довольно высока, и среди строительных материалов по этому показателю она занимает промежуточное положение. А учитывая небольшой удельный вес, она сравнима в этом плане с металлом. Слабым местом древесины является то, что она - анизотропный материал. Способность сопротивления к разрушению зависит от направления силы относительно расположения волокон. Самые лучшие показатели прочности видны при воздействии на материал вдоль волокон.

Жесткость древесины мала, причина этому - специфическое строение. Древесина - пористый, гибкий материал. Балки способны восстановить свою форму после кратковременной нагрузки. Но остаточные деформации, вследствие длительного воздействия, остаются навсегда. Деревянная балка не сможет восстановить свою форму после долгой эксплуатации.

Твердость строительных материалов определяется тем, какая нагрузка необходима для вдавливания стального шарика с определенными размерами. Для самых жестких пород древесины она составляет всего 1000 Н. При этом низкая твердость - это и одно из главных достоинств материала. Дерево легко обрабатывается, в нем прочно удерживаются гвозди, шурупы, самонарезающиеся винты.

Определяется удельным содержанием влаги в порах. В только что оно достигает 100%. В зависимости от назначения свежесрубленную древесину подвергают сушке до необходимых показателей от 40 до 15%.

Достоинства

Древесина обладает малым значением теплопроводности. Ее можно с успехом применять в качестве теплоизолирующего материала. Простота в обработке позволяет использовать широкий круг инструментов. Невозможно представить любой оркестр без музыкальных инструментов, изготовленных из дерева. Чарующие звуки скрипки - результат такого свойства древесины, как способность к резонансу. Древесина легко изгибается, открывается большой выбор для изготовления различных гнутых конструкций. Также деревянные изделия отличаются хорошими звукопоглощающими характеристиками. Красивая поверхность открывает простор для фантазии при дизайне помещений.

Недостатки

Способность деревянных изделий воспринимать нагрузки зависит от направления приложения силы. Это объясняется анизотропным строением древесины. Кроме того, характеристики прочности зависят еще и от близости к центру ствола, влажности, наличия сучков, трещин. Это заставляет тратить много времени на отбор пригодного материала для работы.

Являясь органическим материалом, древесина беззащитна для насекомых, плесени, грибков. Для долговечной эксплуатации требуется проводить дорогостоящую химическую обработку. Стоит отметить, что деревянные конструкции без предварительной обработки - легкая добыча для огня.

Переработка древесины

В целом можно выделить три вида обработки древесины:

  • Самый распространенный - механический способ. Дерево пилят, строгают, раскалывают.
  • При химико-механической обработке материал подвергают промежуточной подготовке. смешивают со связующим веществом и нагревают. Происходит химическая реакция полимеризации, и на выходе получают такие материалы, как фанера, древесностружечные плиты, фибролит.
  • При химической обработке на древесину воздействуют кислотами, щелочами, солями, подвергают нагреву. Из продуктов такой обработки можно назвать канифоль, камедь, дубильные вещества, целлюлозу.

Деревья старше человека на сотни миллионов лет. Все когда-либо существовавшие цивилизации основаны на применении древесины. Книги, мебель, музыкальные инструменты - все это возможно благодаря этому уникальному природному материалу.

ДРЕВЕСИНА, вторичная ксилема многолетних растений; в растущих деревьях и кустарниках составляет основную массу стволов, ветвей, корней и выполняет в них проводящие, запасающие и механические функции. Различают древесины хвойных (сосна, ель и др.) и лиственных (дуб, берёза и др.) пород.

Строение. Древесину изучают на трёх разрезах ствола: поперечном и двух продольных - радиальном и тангенциальном (рис. 1). В древесине различают заболонь (периферическую светлую зону) и ядро (центральную зону), имеющее более тёмную окраску у так называемой ядровой древесины или мало отличающееся по цвету от заболони у безъядровой древесины. Среди безъядровых пород (ель, пихта, бук и др.) выделяют спелодревесные, у которых центральная зона древесины в свежесрубленном состоянии менее влажная, чем периферическая, и заболонные (берёза, клён) - с равномерной влажностью по сечению ствола. Годичные слои (ежегодные приросты древесины) на поперечном разрезе имеют вид концентрических окружностей, на радиальном и тангенциальном - соответственно прямых и изогнутых полос; у многих пород в каждом слое заметны менее плотная светлая (так называемые ранняя) и более плотная тёмная (поздняя) древесина. У кольцесосудистых лиственных пород (например, дуб, ясень) крупные сосуды расположены только в ранней древесине, а у рассеянно-сосудистых (берёза, осина) крупные и мелкие сосуды равномерно распределены по годичному слою. У некоторых лиственных пород на поперечном разрезе видны светлые радиальные полоски (лучи), на радиальном - блестящие тёмные или светлые поперечные полоски, а на тангенциальном - веретеновидные узкие полоски. У некоторых хвойных пород (сосна, кедр и др.) в поздней зоне годичных слоёв на поперечном разрезе заметны светлые пятнышки - смоляные ходы.

Наблюдаемая с помощью оптического и электронного микроскопов структура древесины срубленного дерева включает растительные клетки с отмершим протопластом (так называемая мезоструктура). Клеточные стенки (микроструктура) состоят в основном из целлюлозных микрофибрилл (наноструктура). В тонкой первичной и толстой трёхслойной вторичной оболочке клеточной стенки микрофибриллы имеют различную ориентацию; в наиболее мощном внутреннем слое вторичной оболочки микрофибриллы расположены под небольшим углом наклона (5-15°) к длинной оси клетки. Такая преимущественная ориентация микрофибрилл - одна из основных причин анизотропии древесины. Со стороны полости клетки стенку покрывает тонкий бородавчатый слой. В стенках клеток имеются простые или окаймлённые поры. В промежутках между микрофибриллами находится лигнин, вызывающий одревеснение клеточных стенок, а также гемицеллюлозы и вода.

Древесина хвойных пород в основном состоит из удлинённых прозенхимных клеток - трахеид (рис. 2). Расположенные в ранней зоне годичного слоя крупнополостные трахеиды выполняют главным образом проводящую функцию, поздние толстостенные трахеиды - механическую, а паренхимные клетки, образующие лучи и участвующие в структуре вертикальных смоляных ходов, - запасающую. Горизонтальные ходы в некоторых лучах пересекаются с вертикальными, составляя единую смолоносную систему. В древесине лиственных пород (рис. 3) проводящую функцию выполняют сосуды, сосудистые и волокнистые трахеиды; механическую - волокна либриформа и/или волокнистые трахеиды; запасающую - паренхимные клетки в виде горизонтальных однорядных и многорядных лучей, а также вертикальной осевой паренхимы.

Состав и свойства. Химический состав древесины всех пород практически одинаков (49-50% углерода, 43-44% кислорода, 6% водорода и 0,1-0,3% азота). В древесине эти элементы образуют органические вещества: целлюлозу (31-50%), лигнин (20-30%) и гемицеллюлозы (19-35%), включающие пентозаны (5-29%) и гексозаны (6-13%). Хвойные породы содержат несколько больше целлюлозы, лиственные - значительно больше пентозанов. В состав древесины входят также экстрактивные вещества (таннины, смолы, камеди, эфирные масла и др.). Минеральные вещества при сжигании древесины образуют золу (0,1-1%). Массовая теплота сгорания древесины не зависит от породы и составляет 19,6-21,4 МДж/кг; объёмная теплота сгорания (МДж/м 3) зависит от плотности древесины.

Физические свойства. Внешний вид древесины характеризуется цветом, блеском и текстурой, которые служат для идентификации древесных пород, а также определяют ценность древесины как декоративного материала. Многообразие цвета древесины разных пород зависит от состава и содержания экстрактивных веществ. Цвет изменяется при воздействии на древесины воздуха, света, температуры, химических агентов, а также в результате пропаривания, длительной выдержки в воде, при грибных поражениях. Блеск древесины определяется в основном наличием лучей на продольных разрезах. Текстура древесины (рисунок, образующийся в результате перерезания анатомических элементов) зависит не только от породы дерева, но и от направления разреза ствола. Особенно эффектна текстура у некоторых лиственных пород из-за перерезанных сосудов (например, дуб, ясень), лучей (бук, клён) и пороков строения (карельская берёза).

Влажность древесины (W) определяется как отношение содержащейся в ней массы воды к массе абсолютно сухой древесины. Связанная вода содержится в клеточных стенках, свободная - в полостях клеток и межклеточных пространствах. Влажность ядра свежесрубленных хвойных деревьев составляет 35-37%, заболони - в 2-3 раза больше; у лиственных пород это различие незначительно. По высоте ствола влажность распределена неравномерно; она также подвержена сезонным и суточным колебаниям. Свойства древесины резко меняются при влажности ниже предела насыщения клеточных стенок W п.н., равного в среднем 30% (определяется при увлажнении в воде). Древесина обладает способностью поглощать влагу из воздуха (в виде связанной воды), при этом максимальная влажность древесины достигает предела гигроскопичности, равного W п.н при комнатной температуре. При вымачивании древесина поглощает воду как в свободном, так и связанном виде, при этом наибольшая влажность составляет 100-270%. По степени влажности древесину разделяют: на мокрую, длительное время находившуюся в воде (влажность более 100%); свежесрубленную, сохранившую влажность растущего дерева (50-100%); древесину атмосферной сушки, или воздушносухую, выдержанную на открытом воздухе (15-20%); камерной сушки, или комнатносухую, высушенную в камере или выдержанную в отапливаемом помещении (8-12%); абсолютно сухую, высушенную при температуре около 103 °С (0%). При выдерживании на воздухе при постоянных температуре и относительной влажности древесина приобретает соответствующую и одинаковую для всех пород равновесную влажность; при кондиционировании (температура воздуха 20 °С и влажность 65%) влажность древесины называется нормализованной и составляет 12%. Уменьшение содержания связанной воды приводит к усушке древесины При полном удалении связанной воды сокращаются линейные размеры древесины (на 8-10% в тангенциальном направлении, 3-7% в радиальном, 0,1-0,3% вдоль волокон) и объём (на 11-17%). Увеличение содержания связанной воды (при выдерживании древесины во влажном воздухе или воде) вызывает разбухание древесины. Из-за различий усушки и разбухания по разным направлениям происходит коробление древесины. Неравномерное удаление связанной воды из древесины вследствие стеснённой усушки и неоднородных остаточных деформаций вызывает напряжения, приводящие к растрескиванию материала в процессе сушки или изменению заданной формы деталей при механической обработке высушенной древесины. Растрескивание древесины (например, крупных брусьев и брёвен) происходит также из-за напряжений, обусловленных различием тангенциальной и радиальной усушек.

Плотность материала клеточных стенок (древесинного вещества) не зависит от породы и составляет 1530 кг/м 3 . Плотность древесины в сухом состоянии из-за наличия в ней пустот зависит от породы и изменяется в пределах от 100 кг/м 3 (бальзовое дерево) до 1300 кг/м 3 (бакаут). Плотность древесины для наиболее распространённых отечественных пород при нормализованной влажности составляет 400-700 кг/м 3 . С увеличением влажности (выше W п.н) плотность древесины возрастает. Древесина обладает способностью пропускать под давлением жидкости и газы (водо- и газопроницаемость). Проницаемость древесины лиственных пород выше, чем хвойных, у заболони больше, чем у ядра, вдоль волокон больше, чем поперёк волокон.

Удельная теплоёмкость абсолютно сухой древесины одинакова у всех пород - 1,55 кДж/(кг °С); возрастает с повышением влажности и температуры. Теплопроводность древесины также возрастает с увеличением плотности, влажности и температуры; вдоль волокон она в два раза выше, чем поперёк волокон. Тепловое расширение древесины мало. Сухая древесина имеет очень высокое электрическое сопротивление (является диэлектриком), которое резко снижается (в миллионы раз) с повышением влажности до W п.н, а при дальнейшем увлажнении - лишь в сотни или десятки раз. Древесина обладает невысокой электрической прочностью; для повышения сопротивления пробою её пропитывают минеральными маслами. Диэлектрическая проницаемость сухой древесины составляет 2-5 и увеличивается с повышением влажности и температуры. Под действием механических нагрузок в сухой древесине возникают электрические заряды. Пьезоэлектрические свойства древесины обусловлены наличием ориентированного компонента - целлюлозы; в сухой древесине они наиболее заметны, с увеличением влажности уменьшаются и при влажности 6-8% практически исчезают. В древесине скорость распространения звука вдоль волокон составляет 5000 м/с, поперёк волокон - в 3-4 раза меньше и уменьшается с увеличением влажности и температуры древесины. Удельное акустическое сопротивление древесины, равное произведению её плотности на скорость звука, около 3·10 6 Па·с/м. Декремент затухания звука в древесине зависит от частоты колебаний, влажности, температуры и составляет (2-4)·10 -2 Нп. Древесина обладает относительно низким звукопоглощением и высокой резонансной способностью, что обусловило широкое применение древесины (особенно ели, пихты) для изготовления дек музыкальных инструментов.

Воздействие на древесину электромагнитных колебаний зависит от их частоты: ИК-излучение прогревает поверхностные слои в древесине (применяется для сушки шпона и других тонких сортиментов); видимый свет обладает большой проникающей способностью (для дефектоскопии древесины); световое лазерное излучение прожигает древесину (в качестве своеобразного «режущего» инструмента для фигурного раскроя изделий из древесины, гравёрных работ и др.); УФ-излучение вызывает люминесценцию древесины (для контроля качества обработки древесины). Рентгеновские и ядерные излучения, проходя через древесину, ослабляются в зависимости от толщины, плотности и влажности сортимента; их также применяют для дефектоскопии древесины.

Механические свойства. Древесина характеризуется прочностью и деформативностью (способностью изменять размеры и форму). Прочность образцов древесины определяют при испытаниях на сжатие, растяжение, изгиб, сдвиг и (реже) на кручение. Показатели механических свойств древесины вдоль волокон значительно выше, чем поперёк волокон. У наиболее распространённых отечественных пород пределы прочности древесины (для образцов без пороков, с влажностью 12%) составляют: при сжатии вдоль волокон 40-73 МПа; при растяжении вдоль волокон 66-171 МПа, поперёк волокон в радиальном направлении 4-13,3 МПа, в тангенциальном - 2,8-9,2 МПа; при изгибе 68-148 МПа. Повышение влажности древесины до W п.н снижает пределы прочности при сжатии вдоль волокон в 2-2,5 раза; увеличение размеров образцов и наличие пороков древесины также уменьшает её прочность. При кратковременных и сравнительно небольших нагрузках древесина деформируется как упругий материал; модуль упругости древесины вдоль волокон составляет 12-18 ГПа, поперёк волокон в 15-30 раз меньше. Реологические свойства древесины (характеризующие её повышенную способность деформироваться под нагрузкой во времени) возрастают с увеличением содержания в ней связанной воды и температуры. При снижении влажности и температуры нагруженной древесины значительная часть упругих деформаций перерождается в «замороженные» деформации, которые проявляются в процессах сушки, прессования, гнутья древесины. Замороженные деформации обусловливают «память» древесины на температурно-влажностные воздействия. Прочность древесины при длительном воздействии нагрузки может снизиться в 2 раза. Многократное изменение нагрузки приводит к снижению прочности - усталости древесины; циклические изменение влажности нагруженной древесины вызывает гигроусталость, т. е. снижение прочности и повышенную деформацию. При проектировании деревянных конструкций используют расчётные сопротивления, которые в несколько раз меньше пределов прочности, что позволяет учесть влияние длительности нагрузки, влажности, температуры, пороков и других факторов. Ударная вязкость древесины характеризует её способность поглощать работу при ударе без разрушения; у лиственных пород этот показатель в 2 раза выше, чем у хвойных. Твёрдость древесины зависит от её плотности, причём торцовая твёрдость больше боковой.


Пороки
. Недостатки, изменяющие внешний вид древесины, целостность тканей, правильность строения и др., снижают качество древесины и ограничивают возможности её практического использования. Возникают как в растущем дереве, так и в срубленной древесине во время её хранения и переработки. К ним относятся: сучки; трещины (метиковые, морозные, отлупные), возникающие в растущем дереве и при сушке; пороки формы ствола - сбежистость (аномальное уменьшение диаметра по длине ствола), закомелистость (резкое увеличение диаметра в нижней части ствола), а также кривизна, наросты; пороки строения - наклон волокон, свилеватость (извилистое и беспорядочное расположение волокон), завиток (местное искривление годичных слоёв), крень (реактивная древесина у хвойных пород), ложное ядро и внутренняя заболонь у лиственных пород, пасынок (крупный сучок); раны - сухобокость (наружное омертвление ствола) и прорость (зарастающая рана, содержащая кору и омертвелую древесину), засмолок и кармашек (отложения смолы), водослой (переувлажнённые участки ядра или спелой древесины) и др. К порокам древесины также относятся: изменения естественной окраски древесины (например, продубина и желтизна); грибные поражения в виде синевы, плесени, гнили; биологические повреждения насекомыми и птицами (например, червоточины от личинок); механические повреждения стволов и дефекты обработки лесоматериалов, инородные включения (камни, металлические осколки и др.), обугленность, покоробленность. Некоторые пороки древесины могут рассматриваться как её достоинства, например наросты с красивой текстурой.

Применение . Древесина как конструкционный материал получила широкое распространение в строительстве, судостроении, на железнодорожном транспорте и др.; применяется в виде лесоматериалов, пиломатериалов, древесных материалов. Древесина используется в производстве бумаги, картона, древесноволокнистых плит. Как химическое сырьё древесину используют для получения различных органических соединений, например целлюлозы, этанола, кормовых дрожжей, ксилита, сорбита, древесного угля, смолы, метанола, уксусной кислоты, ацетона и других растворителей, горючих и негорючих газов (при пиролизе древесины). Древесина сохраняет своё значение и как топливо.

Древесиноведение - научная дисциплина, изучающая строение и свойства древесины и коры методами биологии, химии, физики и других наук. Для определения качества древесины проводят испытания, в том числе неразрушающие, основанные на использовании ИК-, светового, УФ-, рентгеновского и ядерных излучений, звуковых и ультразвуковых колебаний. Разрабатываются новые методы исследований древесины, а также способы улучшения её свойств (модифицирование древесины прессованием, введением синтетических полимеров и других веществ; пропитывание антисептиками и антипиренами для защиты от гниения и огня).

Лит.: Ванин С. И. Древесиноведение. М.; Л., 1949; Перелыгин Л. М. Древесиноведение. 4-е изд. М., 1971; Уголев Б. Н. Древесиноведение с основами лесного товароведения. М., 2001.

Древесина представляет собой сложный композиционный материал, созданный природой. При рассмотрении структуры древесины принято различать макроструктуру, различимую невооруженным глазом, и микроструктуру, различимую с помощью оптической и электронной микроскопии.

Макроструктура древесины - строение древесины, видимое невооруженным глазом. Рассматриваются три основных разреза ствола: поперечный - торцовый и два продольных - радиальный, проходящий через ось ствола, и тангентальный, проходящий по касательной к годовым кольцам (рис. 3.1).

На поперечном разрезе древесины ствола видны концентрические годовые кольца, располагающиеся вокруг сердцевины. Каждое годовое кольцо имеет два слоя: ранней (весенней) и поздней (летней) древесины. Ранняя древесина светлая и состоит из крупных тонкостенных клеток.

Рис. 3.1. Строение ствола дерева:

Поздняя древесина более темного цвета, состоит из мелких клеток с толстыми стенками; поэтому она менее пориста и обладает большей прочностью, чем весенняя.

В процессе роста дерева стенки клеток древесины внутренней части ствола, примыкающей к сердцевине, постепенно изменяют свой состав, одеревеневают и пропитываются у хвойных пород смолой, а у лиственных - дубильными веществами. Движение влаги в древесине этой части ствола прекращается, и она становится более прочной, твердой и менее способной к загниванию. Эту часть ствола у разных пород называют ядром или спелой древесиной.

Микроструктура древесины. Изучая строение древесины под микроскопом, можно увидеть, что основную массу древесины составляют клетки механической ткани, имеющие веретенообразную форму и вытянутые вдоль ствола.

Срубленная древесина состоит из отмерших клеток, т. е. только из клеточных оболочек (рис. 3.2). Оболочки клеток сложены из нескольких слоев очень тонких волоконец, называемых микрофибриллами, которые компактно уложены и направлены по спирали в каждом слое под разным углом к оси клетки (подобно отдельным прядям в канате). Это обеспечивает высокую прочность древесине.

Химический состав древесины. Микрофибриллы состоят из длинных, напоминающих цепи макромолекул целлюлозы (от лат. cellula - клетка). Эти цепи построены из большого числа (нескольких сотен) ячеек глюкозы (поэтому целлюлозу можно назвать полисахаридом):

Макромолекулы целлюлозы благодаря наличию сильно полярных групп -он жестко связаны друг с другом, чем объясняется отсутствие у древесины области высокоэластического состояния, возникающего при нагревании у большинства линейных полимеров (например, у полиэтилена). Эти же гидроксильные группы объясняют гигроскопичность древесины и сопутствующие ей набухание и усушку (см. п. 3.4). Механизм гигроскопичности заключается в образовании электростатической связи между полярными - он группами целлюлозы и диполями воды: от их вида, места расположения, размеров, а также от назначения древесной продукции. Один и тот же порок в некоторых видах продукции делает древесину непригодной, а в других понижает ее сортность или не имеет существенного значения. Поэтому в стандартах на конкретные виды лесопродукции имеются указания о допустимых пороках.

Пороки древесины можно разделить на несколько групп: пороки формы ствола, пороки строения древесины, сучки, трещины, химические окраски и грибковые поражения и покоробленности. Ниже рассмотрены основные виды пороков.

Пороки формы ствола легко определяются на растущем дереве, поэтому стволы таких деревьев могут быть отбракованы на лесосеке. К этой группе пороков относятся сбежистость, закомелистость и кривизна ствола (рис. 3.3).

Сбежистость - значительное уменьшение диаметра по длине ствола. Нормальным сбегом считается уменьшение диаметра на 1 см на 1 м длины ствола. Этот порок уменьшает выход обрезных пиломатериалов. Кроме того, в материале оказывается много перерезанных волокон, что снижает его прочность.

Закомелистость - резкое увеличение диаметра комлевой (нижней) части ствола. Закомелистость бывает круглой и ребристой. В любом случае она увеличивает количество отходов и искусственно вызывает косослой в готовой продукции.

Кривизна ствола - искривление ствола дерева в одном или нескольких местах. Сильная кривизна переводит древесину в разряд непригодной для строительных целей.

Пороки строения древесины представляют собой отклонения от нормального расположения волокон в стволе дерева: наклон волокон, свилеватость, крень, двойная сердцевина и др. (рис. 3.4).

Рис. 3.3. Пороки формы ствола:

Наклон волокон (косослой) - непараллельность волокон древесины продольной оси пиломатериала. Это явление (особенно при больших углах наклона волокон) вызывает резкое снижение прочности древесины и затрудняет ее обработку.

Рис. 3.4. Пороки строения древесины:
а - наклон волокон; б - свилеватость; в - крень; г - двойная сердцевина

Пиломатериал, имеющий косослой, обладает повышенной склонностью к короблению при изменении влажности.

Свилеватость - крайнее проявление косослоя, когда волокна древесины расположены в виде волн или завитков.

Свилеватость в некоторых породах (орех, карельская береза) придает красивую текстуру древесине; такие породы используются в отделочных работах.

Крень - изменение строения древесины, когда годовые кольца имеют разную толщину и плотность по разные стороны от сердцевины. Крень нарушает однородность древесины.

Сучки - самый распространенный и неизбежный порок древесины, представляющий собой основание ветвей, заключенные в древесине. Они нарушают однородность строения древесины, вызывают искривление волокон (свилеватость). Сучки уменьшают рабочее сечение пиломатериалов, снижая их прочность в 1,5…2 раза (а в тонких Досках и брусках и более).

По степени срастания сучков с древесиной ствола различают сучки сросшиеся, частично сросшиеся и несросшиеся (выпадающие). Особенно опасны сучки разветвленные (лапчатые) (рис. 3.5).

Рис. 3.5. Различные виды сучков: а - сросшийся здоровый; 6 - выпадающий; в - сшивной; г - разветвленный (лапчатый)

Здоровые сучки имеют древесину твердую и плотную без признаков гнили. Часто сучки загнивают вплоть до превращения в рыхлую порошкообразную массу - это так называемые табачные сучки.

Для изготовления несущих деревянных конструкций использует-ся древесина, имеющая только здоровые сросшиеся сучки. Количество и размещение сучков определяют сортность материала.

Трещины могут появляться как на растущем дереве, так и при высыхании срубленного дерева и пиломатериалов. Они нарушают целостность лесоматериалов, уменьшают выход высокосортной продукции, снижают прочность и даже делают их непригодными для строительных целей. Кроме того, трещины способствуют гниению древесины.

Различают следующие типы трещин: метик, морозобоина и отлуп, образующиеся на растущем дереве, и трещины усушки, образующиеся на срубленной древесине (рис, 3.6).

Метик - внутренние трещины, идущие вдоль ствола от центра к периферии; трещин может быть несколько как расположенных в одной плоскости, так и крестообразно.

Рис. 3.6. Виды трещин: а, б - метиковая простая и сложная; в, г - морозобоина открытая и закрытая; д, е - отлуп кольцевой и частичный

Морозобоина - наружная открытая продольная трещина, сужающаяся к центру. Такие трещины возникают при замерзании влаги в стволе во время сильных морозов.

Отлуп - полное или частичное отделение центральной части ствола от периферийной в результате усушки первой. Такие трещины располагаются по годовым кольцам.

Трещины усушки встречаются очень часто в древесине всех пород; они возникают в результате напряжений, вызванных неравномерной усадкой при быстрой сушке древесины на воздухе. Эти трещины направлены от периферии к центру вдоль волокон древесины.

Грибные поражения и химические окраски вызываются простейшими живыми организмами - грибами, развивающимися из спор и использующими древесину в качестве питательной среды, или микроорганизмами. Для развития грибов необходим кислород воздуха, определенная влажность и положительная температура. Различают грибы, поражающие деревья, растущие в лесу, и свежесрубленную Древесину, и грибы, развивающиеся на деревянных конструкциях.

На растущих деревьях могут развиваться деревоокрашивающие грибы. Они питаются содержимым клеток, не затрагивая их стенки. Поэтому прочность такой древесины изменяется незначительно, но на Древесине появляются цветные пятна и полосы.

Изменение окраски древесины без изменения ее механических свойств может происходить из-за биохимического окисления дубильных веществ, провоцируемого микроорганизмами.

Значительно более опасны дереворазру тающие грибы. Они питаются материалом стенок клеток - целлюлозой, разлагая ее с помощью ферментов до глюкозы.

Это возможно только при достаточной влажности древесины. Глюкоза в теле гриба используется в процессе его жизнедеятельности и, в конце концов, превращается в углекислый газ и воду:

Гниение по сути - это то же самое, что и горение, но с очень малой скоростью.

Известно большое число дереворазрушающих грибов. Среди них наиболее часто встречаются так называемые домовые грибы. При поражении такими грибами древесина делается трухлявой и легкой, а на ее поверхности появляется налет плесени в виде мягких подушечек. Домовый гриб может разрушить древесину очень быстро (в течение нескольких месяцев).

Процесс гниения прекращается при снижении влажности древесины до 18…20 % (сухая древесина не гниет), снижении температуры ниже 0 °С или исключении поступления кислорода.

Повреждения насекомыми (червоточины) представляют собой ходы и отверстия, проделанные в древесине насекомыми (жуками-короедами, точильщиками), которые живут в ней и ею же питаются. Жуки-точильщики могут развиваться в сухой древесине и даже в мебели.

Рис. 3.7. Продольная покороб-ленность

Поверхностные червоточины не влияют на механические свойства древесины, так как при распиловке уходят в горбыль. Глубокие червоточины нарушают целостность древесины и снижают ее прочность.

Покоробленности - нарушение формы пиломатериалов при изменении ее влажности при сушке и хранении или под действием внутренних напряжений при продольной распиловке крупных элементов на более мелкие. Покоробленность бывает поперечная, продольная (простая и сложная) и винтообразная (крыловатость) (рис. 3.7).

Древесина является одним из основных материалов, применяемых для изготовления модельных комплектов. Она отличается малой плотностью, хорошей обрабатываемостью режущими инструментами, невысокой стоимостью.

Дерево состоит из тесно сросшихся между собой клеток, разнообразных по своей форме и величине. Клетки образуют волокна, представляющие собой трубки - сосуды, по которым протекают питательные соки. Ствол дерева состоит из конусообразных оболочек неправильной формы, сросшихся между собой и нарастающих каждый год снаружи. Схема строения дерева представлена на рис. 1, а, б.

Кора 1 предохраняет дерево от внешних климатических воздействий. Внутренняя часть коры 2 называется лубом, проводящим питательные вещества. Между корой 1 и древесиной 4 находится камбий 3 - тонкий слой ткани, он служит для питания древесины и образования (отложения) годичного слоя ее.

Древесина состоит из концентрических (иногда извилистых) годичных колец (это ткань, находящаяся между камбием и сердцевиной). Древесина некоторых пород не имеет равномерной окраски: во внутренней части ствола она имеет более темный цвет, чем в периферической. В этих случаях темноокрашенная часть древесины называется ядром, а периферическая, более светлая - заболонью. Такие породы называются ядровыми. К ним принадлежат сосна, лиственница, ясень, дуб и др. Например, у сосны и лиственницы ядро образуется лишь в возрасте 25-30 лет. Некоторые породы не имеют ядра (например, ель, пихта, береза, осина, липа и др.). Они состоят только из заболони.

Низкокачественной частью дерева является сердцевина 5, б, у одних пород она выгнивает (липа, береза), а у других отделяется в виде стержня (ель). Для ответственных частей модели сердцевину удаляют при раскрое пиломатериала.

На торцовом разрезе ствола хорошо видны узкие радиальные полоски - сердцевинные лучи, проводящие питательные вещества.

Представление о строении древесины дает микроструктура. При рассматривании тонких срезов древесины под микроскопом оказывается, что она состоит из разнообразного рода клеток, образованных отложениями камбиального слоя. Живые клетки камбия состоят из нежной оболочки, наполненной жидким веществом - протоплазмой (жидкое прозрачное вещество, содержащее кислоты, неорганические соли, воду, белки и др.). По достижении определенной зрелости протоплазма высыхает, клетка умирает и сохраняется лишь отвердевшая оболочка ее - годичный слой. Из таких мертвых клеток разнообразной величины и формы и состоит вся древесина, формирующаяся из годовых колец. Группа клеток, имеющих одинаковое назначение, называется тканью. Ткани древесины подразделяются на три вида: запасающую, проводящую (сосудистую) и опорную (механическую).

Рис. 1. Схема строения дерева:
а - годичные нарастания на стволе, показанные в долевом разрезе ствола дерева по оси; б - разрезы ствола: П - поперечный (торцовый), Р - радиальный, Т - тангенциальный

Запасающая ткань состоит из коротких запасающих клеток и служит для накопления и хранения питательных веществ (рис. 2, а, б).

Проводящая ткань состоит из вытянутых тонкостенных клеток с широкими внутренними просветами. Длина сосудов в зависимости от породы дерева в среднем составляет от 100 мм и более, а диаметр до 0,5 мм (рис. 2,в).

Опорная ткань состоит из длинных толстостенных клеток с малыми внутренними просветами и заостренными концами. Чем больше этой ткани, тем древесина плотней (рис. 2, г). Длина таких клеток составляет более 1 мм, ширина до 0,2 мм. Концы опорных клеток прочно соединяются друг с другом и оказывают надлежащее сопротивление разрыву, сжатию и изгибу. В лиственных деревьях они довольно равномерно распределены по годичному слою. В хвойных они заменяются толстостенными подводящими клетками.

Чем уже годовые слои у хвойных пород, тем древесина плотнее. У лиственных пород, наоборот: чем шире годовые слои, тем древесина плотнее, тверже (ясень, дуб и др.).

В хвойных породах главную роль играют правильно расположенные вдоль ствола древесины радиальными рядами замкнутые удлиненные клетки (волокна), служащие для проведения воды и растворенных в ней неорганических солей (рис. 2, д, е). Такие клетки называются трахеидами, их находится в хвойных породах до 95% объема древесины. Длина трахеид до 10 мм, толщина - до 0,05 мм.

Тонкостенные трахеиды заменяют собой сосуд, а толстостенные- волокна опорной (механической) ткани. У ряда деревьев хвойных пород имеются смоляные ходы, в которых накапливается смола, увеличивающая стойкость древесины против загнивания. Диаметр смоляных ходов в среднем 0,1 мм, которые составляют около 1% объема древесины.

Строение лиственных пород более сложное, чем у хвойных. Сердцевинные лучи развиты больше и достигают 160 мм в высоту, а ширина лучей изменяется от 0,015 до 0,6 мм. Микроструктура древесных пород показана на рис. 3, а - в.


Рис. 2. Микроэлементы древесины:
а - волокно из коротких запасающих клеток, б - запасающие клетки, в - членик сосуда, г - клетка механической ткани, д - тонкостенная трахеида, е - толстостенная трахеида

На поперечном разрезе ствола различных пород древесины обычно видны: сердцевина, древесина, камбий и кора.

Древесина хвойных пород состоит из внутренней, более темной части - ядра и наружной, более светлой - заболони. Ядро представляет собой более плотную часть древесины, не проводящую воду и имеющую значительно меньшую влажность, чем заболонь. Как ядро, так и заболонь состоят из концентрических колец - годичных слоев по числу которых можно определить возраст дерева. Сердцевина расположена в центре ствола, занимает небольшую его часть и отличается темной окраской и меньшей плотностью, чем древесина. Камбий является образовательной тканью. Кора состоит из внутренней живой части - луба, проводящего раствор органических веществ из листьев, и наружной части - корки.

Древесина состоит из клеток и поэтому обладает большой пористостью, которая сказывается на физических свойствах древесины. Пористостью древесины объясняется ее низкая теплопроводность и малый удельный вес. Удельный вес древесины разных пород в среднем составляет около 1,55. Поры в различных породах древесины занимают 56-72% от ее объема. Они заполнены воздухом, который является плохим проводником тепла. Поэтому теплопроводность сухой древесины меньше, чем влажной. Древесина имеет весьма сложный химический состав. В ее состав входят: целлюлоза, лигнин и гемицеллюлозы. Древесина содержит в небольших количествах также смолу, жиры, терпены, дубильные и другие вещества (посторонние вещества древесины).

Целлюлоза (клетчатка) является главной (50% по весу) и наиболее важной в техническом отношении составной частью древесины.

Клетчатка - высокомолекулярный полисахарид со свойствами коллоида; эмпирическая формула (C 6 H 10 O 5). Целлюлоза не растворяется в воде, спирте, эфире, бензине и других обычных растворителях. Растворителем для нее является аммиачный раствор гидрата окиси меди. В древесине содержится 23-27% лигнина, свойства которого еще недостаточно изучены.

Элементарный состав лигнина следующий: углерода 61-65%, водорода 4,9-6,4% и кислорода 28,6-34,1%. Колебания в элементарном составе лигнина объясняются разной степенью его чистоты и измененности. Лигнин изолируется различными методами, поэтому неодинаковы его эмпирические формулы, предложенные различными исследователями, например: С 22 Н 20 О 7 , С 10 Н 10 О 3 , С 40 Н 42 О 16 , С 120 Н 138 О 35 . Точно не установлен и молекулярный вес лигнина. Предполагают, что он достигает нескольких тысяч. О химической природе лигнина существуют две теории. До последнего времени большинством исследователей лигнин рассматривался как вещество ароматической природы. Дальнейшие исследования показывают, что в образовании лигнина принимают участие неизвестные неустойчивые углероды. Так появилась теория углеводного происхождения лигнина.

В. Н. Козлов предполагает, что лигнин, кроме ароматических веществ, содержит какие-то углеводы. Гемицеллюлоза - это углеводная часть древесины, которая в отличие от целлюлозы легко гидролизуется разбавленными кислотами. Гемицеллюлозы так же как и целлюлоза относятся к высокомолекулярным соединениям. В смоляных ходах древесины хвойных пород содержится живица, которая вытекает наружу при поражениях древесины. Живица образуется в живых тонкостенных клетках, выстилающих смоляной ход. В химическом отношении живица представляет собой раствор смоляных кислот в терпенах. При перегонке часть живицы улетучивается. Летучая часть называется скипидаром, а твердый остаток - канифолью.

Дубильные вещества (танниды, нетанниды) в различных породах содержатся в коре, древесине, корнях. В древесине сосны и ели дубильных веществ очень мало, в коре же их содержится значительно больше. В клеточном соке растений танниды находятся в растворенном виде или выделяются из него в виде капелек. После отмирания клеток они остаются в их полостях в виде аморфных масс или пропитывают клеточные стенки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Похожие статьи

  • Мужчина обнимает по соннику

    Снам, в которых вы обнимаетесь с мужчиной, сонники дают двоякое толкование. С одной стороны, такой сон может иметь сугубо положительное значение: если вам снятся объятия с мужчиной, к которому вы неравнодушны, он может предвещать перемены...

  • Гадание на кофейной гуще: значение и толкование

    Все мы склонны при любой удобной возможности питать страсть к неизведанному будущему, находя ответы на волнующие вопросы в подсказках судьбы, имеющих совершенно разный вид. Поэтому большинство, кто выпивает чашечку ароматного...

  • План на тему экономика как наука

    Зиннатуллина Элеонора Рауфовна, преподаватель истории и обществознания, Братский промышленный техникум Урок обществознания по теме «Экономика как наука и хозяйство» Разработка урока обществознания по теме «Экономика как наука и...

  • Самые трудные вопросы по биологии егэ

    В презентации представлен личный опыт работы с учащимися при подготовке к ЕГЭ по биологии.Проанализированынаиболее сложные вопросы, требующие нестандартных ответов, дан алгоритм решения разноуровневых задач (С1 - С6). Система работы...

  • Некрасов николай алексеевич

    Очень краткая биография (в двух словах) Родился 10 декабря 1821 года в Немирове, Подольская губерния. Отец - Алексей Сергеевич Некрасов (1788-1862), поручик. Мать - Елена Андреевна Закревская (1801-1841). В 1832 году поступил в...

  • Почему северная корея не пойдет китайским путем

    Северная Корея имеет не самую лучшую репутацию. В мире считают, что в КНДР воцарился иррациональный и воинственный режим, а управляют страной люди, остающиеся в плену идеологических моделей 70-летней давности. Однако более трезвый взгляд...