Сервоприводы. Виды и устройство

Серводвигатели используются не только в авиамоделизме и робототехнике, их можно так же использовать в устройствах бытового назначения. Небольшие размеры, высокая производительность, а так же проста управления серводвигателем делают их наиболее подходящими для осуществления дистанционного управления различными устройствами.

Совместное применение серводвигателей с радиомодулями примема-передачи не создает никаких трудностей, достаточно на стороне приемника просто подключить к серводвигателю соответствующий разъем, содержащий питающее напряжение и управляющий сигнал, и дело сделано.

Но если мы хотим управлять серводвигателем «вручную», например, с помощью потенциометра, нам необходим генератор импульсного управления. Ниже представлена достаточно простая схема генератора на основе интегральной микросхемы 74HC00.

Данная схема позволяет осуществлять ручное управление серводвигателями путем подачи управляющих импульсов шириной 0,6 до 2 мс. Схему можно применить, например, для поворота небольших антенн, наружных прожекторов, камер видеонаблюдения и т.д.

Управления серводвигателем. Описание контроллера

Основой схемы является микросхема 74HC00 (IC1) представляющая собой 4 логических элемента И-НЕ. На элементах IC1A и IC1B создан генератор, на выходе которого образуются импульсы с частотой 50 Гц. Эти импульсы активируют RS-триггер, состоящий из логических элементов IC1C и IC1D.

С каждым импульсом идущим с генератора выход IC1D устанавливается в «0» и конденсатор С2 разряжается через резистор R2 и потенциометр P1. Если напряжение на конденсаторе С2 снижается до определенного уровня, то RC-цепь переводит элемент в противоположное состояние. Таким образом, мы на выходе получаем прямоугольные импульсы с периодом 20 мс. Ширина импульсов устанавливается потенциометром P1.

Например, сервопривод Futaba S3003 изменяет угол вращения вала на 90 градусов за счет управляющих импульсов продолжительностью от 1 до 2 мс. Если мы изменим ширину импульса от 0,6 до 2 мс, то угол поворота составит до 120 °. Компоненты в схеме подобраны таким образом, что выходной импульс находится в диапазоне от 0,6 до 2 мс, и поэтому угол установки составляет 120 °. Серводвигатель S3003 от Futaby имеет достаточно большой крутящий момент, и ток потребления может составлять от десятков до сотен мА в зависимости от механической нагрузки.

Конструкция

Сейчас 11 гостей и ни одного зарегистрированного пользователя на сайте

В работе фрезеров используются два типа двигателя: шаговый – электромеханическое устройство, преобразующее сигналы в угловое перемещение ротора с фиксацией в заданном положении. И серводвигатели – имеющие обратную связь, и которыми можно управлять через цепь контроллера путём увеличения и уменьшения тока. Шаговые имеют меньшую мощность и скорость, и значительно дешевле серводвигателей.

Как правило, шаговый электродвигатель – это электромеханическое устройство, которое преобразует сигналы управления в угловое перемещение его ротора с качественной фиксацией в заданном положении. Сегодня современные шаговые двигатели (ШД), по сути, являются синхронными двигателями, не имеющими пусковую обмотку на роторе, что соответственно объясняется частотным пуском самого ШД. Последовательная активация обмоток двигателя порождает дискретные угловые перемещения (т. е. – шаги) ротора. Отличительная особенность этих двигателей – это возможность без датчика обратной связи осуществлять позиционирование по положению.

Шаговый двигатель относится к классу так называемых «бесколлекторных» двигателей постоянного тока. Такие двигатели как непосредственно и любые другие бесколлекторные электрические машины, имеют достаточно высокую надежность и весьма внушительный срок службы, что в свою очередь позволяет применять их в самых разных индустриальных сферах. Если сравнивать обычные электродвигатели постоянного тока с шаговыми двигателями, то последние требуют более сложных схем управления, выполняющие абсолютно все коммутации обмоток.

Сегодня существуют три основных типа/вида шаговых двигателей:

  1. Гибридные двигатели – наиболее часто используемые во фрезерных станках с числовым программным управлением.
  2. Двигатели с постоянными магнитами.
  3. Двигатели, имеющие переменное магнитное сопротивление.

Гибридные шаговые двигатели

Считается, что гибридные двигатели совмещают в себе наилучшие черты ШД с переменным магнитным сопротивлением, а также двигателей с постоянными магнитами. У гибридного двигателя ротор имеет зубцы, которые расположены в осевом направлении. Шаговые гибридные двигатели обеспечивают более меньшую величину шага, большую скорость и больший момент, чем двигатели других типов/видов. Обычно, число шагов для гибридных двигателей может составлять от 100 до 400 (при этом угол шага 3.6 – 0.9о).

Строение шаговых двигателей

Шаговый электрический двигатель состоит из статора, где расположены обмотки возбуждения (т. е. катушки электромагнитов) и соответственно ротора с постоянными магнитами (также используются роторы с переменным магнитным сопротивлением – но реже). ШД с магнитным ротором позволяют обеспечивать фиксацию ротора при обесточенных обмотках и получать больший крутящий момент. Именно благодаря этому, шаговые двигатели достаточно часто применяются в станках с ЧПУ.

Достаточно высокая температура, которая создана в катушках, способна легко рассеяться через массу самого двигателя, таким образом, шаговые электродвигатели от нагрева менее подвержены повреждениям.

Принципы работы шагового двигателя

Как правило, в соответствии с тем, какие именно катушки статора выключены или включены, ротор будет вращаться, чтобы так сказать «подстроиться» к магнитному полю. Например, если представить ШД с двумя катушками в статоре, а в качестве ротора постоянный магнит, то когда соответствующие катушки статора достаточно возбуждены, постоянно намагниченный ротор обязательно повернется, чтобы с магнитным полем статора «выстроиться» в линию. Ротор останется в данном положении, если поле соответственно не вращается.

Когда к этой катушке не будет поступать энергия, а будет направлена непосредственно к следующей катушке, то ротор снова повернется, чтобы подстроиться к полю новоиспеченной позиции. При этом абсолютно каждый поворот обязательно соответствует углу шага, который в свою очередь может измениться от 180о до доли градуса (т. е. до 60о). Затем, в то время когда вторая катушка выключена, включается следующая. Это заставит повернуться ротор на следующий шаг, причем в том же направлении. Данный процесс продолжается до тех пор, пока одна катушка включается, а соответственно другая выключается.

Последовательность шести шагов возвратит ротор в то же состояние, какое было в самом начале последовательности. Теперь если представить, что при завершении первого шага, вместо включения одной катушки и выключения второй – обе катушки были бы включены. В таком случае, ротор повернется только лишь на 30о (т. е. всего на половину от 60о), чтобы выровняться в направлении наименьшего сопротивления. Таким образом, если первая катушка включена, в то время когда вторая выключена, ротор должен повернуться еще на 30о. Называется это действием полушага, что непосредственно включает последовательность восьми движений.

Во время противоположной последовательности выключений/включений, ротор будет совершать обороты в противоположном направлении. В промышленности наиболее применим именно шаговый мотор, который продвигается на угол от 1.8о и до 7.5,о при полном шаге. Для того чтобы размер шагов уменьшить, число полюсов необходимо увеличить. Однако при этом есть физический предел, сколько непосредственно полюсов могут использоваться.

Чтобы снизить дискретность перемещения ротора ШД применяется, как правило – микрошаговый режим. Непосредственно сам микрошаг реализуется при автономном управлении током обмоток шагового двигателя. Управляя соотношением токов находящихся в обмотках, ротор можно зафиксировать между шагами в промежуточном положении. Таким образом, можно увеличить плавность вращения ротора, а также достичь высокой точности позиционирования. Кроме того, в микрошаговом режиме разрешающую способность можно получить в 51200 шаг/об, что положительно отразиться на работе оборудования в целом.

Механическая характеристика шагового двигателя

Очень важной особенностью ШД является, конечно же, их механическая характеристика.

Управление шаговым приводом

Управление шаговым двигателем в самом общем виде сводится к задаче отработать обусловленное число шагов в потребном направлении и с необходимой скоростью.

На блок управления шагового двигателя (т. е. драйвер) подаются определенные сигналы «сделать шаг» - «задать направление». Эти сигналы представляют собой ничто иное как – импульсы 5В.

Данные импульсы можно получить непосредственно от компьютера, к примеру, от LPT-порта, от специализированного контроллера управления шаговыми приводами или же задавать сигналы независимо от генератора 5В или источника питания.

Как правило, работой ШД управляет электронная схема, а его питание выполняется от источника постоянного тока. ШД используют для управления частотой вращения, чтобы не применять дорой контур обратной связи. Данный привод применяется в приводе исключительно с разомкнутой цепью.

Серводвигатели

Серводвигатель – это непосредственно двигатель с обратной связью, которой можно управлять, чтобы или достичь требуемой скорости (следовательно, крутящего момента) или же получить необходимый угол поворота. Именно для этой цели устройство обратной связи посылает определенные сигналы в цепь контроллера серводвигателя, сообщая о скорости и соответственно угловом положении. Если в результате наиболее высоких нагрузок скорость окажется гораздо, ниже требуемой величины, то ток будет увеличиваться покуда скорость не достигнет потребной величины. Когда сигнал скорости показывает, что она больше, чем необходимо, то ток соответственно, уменьшается. Если же по положению применена обратная связь, то сигнал о нем используется, чтобы остановить двигатель в тот момент, когда непосредственно ротор приблизится к необходимому угловому положению.

Для этого могут использоваться разные типы/виды датчиков, включая кодирующие устройства, например, такие как: потенциометры, тахометры и резольверы. Если применяется датчик положения типа кодирующего устройства или потенциометра, его сигнал вполне может быть дифференцирован для того, чтобы выработать определенный сигнал о скорости.

На сегодняшний день сервоприводы используются в высокопроизводительном оборудовании, к примеру, в таких производственных отраслях как: изготовление различных стройматериалов, напитков, упаковки, в полиграфии и подъемно-транспортной технике. Также в последнее время наблюдается тенденция к умножению доли сервоприводов в пищевой промышленности и деревообработке.

Решающим фактором использования сервоприводов является не только высокая их динамика, но и возможность получить высокостабильное или точное управление, широкий диапазон регулирования скорости, малые габариты и вес, а также помехоустойчивость.

Принципы работы серводвигателя

Серводвигатели функционируют вместе с устройствами, которые называются преобразователи (приводы или драйвера серводвигателей). Данные преобразователи меняют напряжение на обмотке возбуждения (или на якоре) сервомотора в зависимости от непосредственной величины напряжения на входе самого двигателя. Вся эта система, как правило, управляется стойкой ЧПУ (СNC). Далее схематично представлена система с сервомотором. Непосредственно под «усилителем» понимается драйвер серводвигателя.

К примеру, в программе, которая заложена в стойке ЧПУ, присутствует особая команда «на расстояние в 10 мм - переместиться по оси Y». На вход драйвера сервомотора со стойки ЧПУ подается определенное напряжение. Серводвигатель начинает вращать ходовой винт, соединенный с энкодером и порталом станка (т. е. перемещаемая часть со шпинделем). При вращении ходового винта энкодер вырабатывает определенные импульсы, которые подсчитывает стойка.

Математическое обеспечение стойки ЧПУ, как правило, устроено таким образом, что стойка «располагает сведениями», что: расстоянию в 10 мм соответствует, к примеру, 10 000 импульсов от энкодера. Следовательно, пока стойка станка не примет эти 10 000 импульсов, то на вход драйвера будет передаваться напряжение задания, то есть будет вырабатываться – рассогласование. Когда портал станка пройдет заданные 10 мм, стойка станка свои 10000 импульсов получает в полном объеме, поэтому напряжение на входе драйвера серводвигателя станет равным (0) «нулю», двигатель остановится, и станок отлично отработает строго 10 мм (причем при абсолютном отсутствии люфтов).

Если под каким-либо воздействием произойдет смещение портала станка – энкодер сразу выдаст импульсы. Данные импульсы будут сосчитаны стойкой, а затем она выдаст напряжение рассогласования непосредственно на драйвер, который повернет якорь двигателя на очень малый угол, чтобы рассогласование равнялось нулю. Таким образом, портал станка отлично удерживается возле заданной ему точки с достаточно высокой точностью.

Также нужно заметить, что далеко не каждый двигатель может поворачиваться на очень малые углы, обеспечивать нужный крутящий момент, динамику разгона и т. д. Это основная причина из-за чего сервоприводы относятся к дорогостоящим устройствам.

Синхронные серводвигатели

Синхронные серводвигатели – трехфазные синхронные электродвигатели с датчиком положения ротора, (т. е. AC-двигатели) и возбуждением от постоянных магнитов. Основным их достоинством является достаточно низкий момент инерции ротора по отношению к крутящему моменту, что в свою очередь позволяет реализовать высокое быстродействие. Всего лишь за десятки миллисекунд достигается разгон на номинальную частоту вращения и реверс с полной скоростью в пределах 1-го оборота вала двигателя.

Как правило, основная область применения данных двигателей является приводы подач станков, а также технологические установки с временным циклом менее 1 секунды (к примеру, быстродействующие позиционные системы самодействующих складов, производство упаковки).

Для сервоприводов характерны такие показатели как:

  • управление по моменту, по скорости или по позиции;
  • статическая точность поддержания скорости непосредственно по валу двигателя не более чем 0,01%;
  • диапазон регулирования скорости более чем в 1:1000;
  • точность поддержания позиции по валу двигателя менее ± 10;
  • компактные размеры и низкий вес:

1 - разъем для подключений;
2 - статор с обмоткой;
3 - датчик скорости и положения;
4 - ротор с магнитами;
5 - электромагнитный тормоз.

  • отсутствие и бесконтактность узлов, требующих обслуживания;
  • достаточно высокое быстродействие;
  • значительная перегрузочная способность по моменту (т. е. кратность предельного момента кратковременно может превысить 3);
  • практически неограниченный диапазон (1:10 000 и более) для регулирования частоты вращения;
  • показатели кпд вентильных двигателей, как правило, превышают 90%, при изменении мощности нагрузки двигателя, при колебаниях напряжения питающей электросети меняются очень несущественно, в отличие от асинхронных электродвигателей, где максимальный кпд не превышает и 86%, а также, напрямую зависит от изменений нагрузки;
  • достаточно низкий перегрев вентильного электродвигателя, потому как на роторе двигателя отсутствует обмотка, что существенно увеличивает его срок службы, работающего в режиме учащенных перегрузок;
  • довольно-таки большая плотность момента на одну единицу массы электродвигателя.

Шаговые двигатели или серводвигатели: выбор двигателей для фрезерно-гравировального станка

Прежде всего, нужно сравнить два вида этих моторов по некоторым параметрам:

Срок службы и обслуживания

Шаговые двигатели – бесщеточные, поэтому единственными изнашиваемыми деталями в конструкции являются подшипники (изначально очень надежная конструкция). Это позволяет считать их двигателями высокой надежности и не требующих обслуживания долгий срок.

Дешевые модели сервоприводов коллекторного типа (со щетками) менее надежны, чем шаговые двигатели и требуют замены щеток примерно через 5000 часов непрерывной работы.

Большинство современных бесколлекторных сервоприводов от известных японских производителей отличаются высокой надежностью (близкой к надежности шаговых двигателей).

Порча подшипников происходит очень редко. Может сгореть обмотка статора. Дешевле купить новый двигатель.

Ремонтопригодны только самые дорогие модели. Проще двигатель сразу менять.

Точность перемещений

При хорошей механике точность не ниже +/- 0.01 мм

У высококачественных сервоприводов точность не ниже +/- 0.002 мкм. Такая точность достижима в случае использования сервоприводов контурного управления (точно обрабатывающих заданную траекторию). Нельзя использовать сервопривода для позиционного управления, так как они иногда дают погрешность значительно превышающую, погрешность в шаговых двигателях!

Скорость перемещения, мощность

В гравировально-фрезерных станках используя шаговые двигатели можно добиться скорости 20 – 25 метров в минуту. При увеличении скорости шаговые двигатели сильно теряют в крутящем моменте.

С использованием сервоприводов в станках с ЧПУ возможно достижение скоростей до 60 м/мин и более.

Скорость разгона

до 120 об/мин за секунду

до 1000 об/мин за 0,2 секунды

Эффект потери шагов при повышении скорости и нагрузки

На скоростях выше номинальных и повышенных нагрузках начинает проявляться эффект потери шагов (смотрите выше график возможной нагрузки от скорости вращения двигателя – механическую характеристику). Потеря шагов возможна также в случае каких либо внешних воздействий: ударов, вибраций, резонансов и т.п.

Современные системы управления шаговыми двигателями позволяют избавиться от этого общего недостатка шаговых двигателей.

Так как сервосистема – это система с обратной связью: в сервомоторе имеется датчик положения, по которому (в случае несоответствия) делается коррекция - то эффекта потери шагов в ней нет.

Принудительная остановка (столкновение с препятствием)

Принудительная остановка шагового двигателя не вызывает у него никаких повреждений

В случае принудительной остановки серводвигателя, драйвер мотора должен правильно среагировать на данную остановку. В противном случае по обратной связи подается сигнал на доработку не пройденного расстояния, повышается ток на обмотках, двигатель может перегреться и сгореть!

Ценовой критерий

Шаговые двигатели значительно дешевле серводвигателей, особенно шаговые двигатели китайского производства.

Чисто конструктивно (датчик положение, более сложный, чем у шагового двигателя, драйвер) серводвигатели дороже шаговых. К тому же, я не встречал в своей практике дешевых китайских серводвигателей.

Шаговый двигатель и сервопривод абсолютно не являются конкурентами, так как каждый занимает исключительно свою предопределенную нишу.

Сравнение работы простого Серво и Шагового двигателей:

Для понимания различия между обычным шаговым и серво двигателем давайте рассмотрим работу системы именно с шаговым мотором, на котором непосредственно стоит энкодер (шаговый серводвигатель).

Контроллер выдал команду на какое-то количество шагов – повернуть вал. В обычном шаговом двигателе контроллер не в курсе, насколько конкретно шагов повернулся вал (т. к. у него отсутствует обратная связь). Просто он «считает», что вал повернулся правильно. А ведь бывает, что двигатель не смог повернуть вал или силы не хватило или по другой какой-либо причине. Хотя при этом контроллер четко отсчитал импульсы. Это и есть так называемый пропуск шагов в шаговом двигателе.

В серводвигателе же подобная проблема полностью отсутствует. Контроллер дал команду вал повернуть настолько-то импульсов и ожидает покуда с энкодера придет сигнал, который подтвердит, что вал повернулся на необходимое число импульсов. При этом если с энкодера поступил, хотя бы на 1 импульс меньше, контроллер все равно будет продолжать подавать команду, пока с энкодера не поступит последний импульс, который выровняет соотношение истинного и заданного количества импульсов. Либо же по истечении заданного периода времени, контроллер выдаст специальный сигнал «Ошибка перемещения».

В сервоприводе удержание осуществляется исключительно за счет тока, протекающего непосредственно через обмотку двигателя. При этом в момент удержания половины периода ток поступает в одном направлении, а вторую половину оставшегося времени в ином направлении. Именно за счет этого происходит удержание якоря. В это время по импульсам с энкодера подходит проверка, якорь на месте (на выходе нет ни одного импульса) или же сдвинулся (на выходе энкодера, как правило, появится импульс, вернее код).

Преимущества шагового двигателя:

Шаговые двигатели существенно дешевле, нежели серводвигатели.
- Простота конструкции, а значит и простота ремонта.
- Простота системы управления (подходят практически все программы написанные для CNC станков).

Преимущества серводвигателя:

Бесшумность и плавность работы в некоторых случаях делают сервоприводы единственным возможным вариантом для работы.
- Надежность и безотказность: возможность применения в ответственных устройствах.
- Высокая точность и скорость перемещений доступны также и на низких скоростях.- Способность двигателя может выбираться пользователем непосредственно от того какую конкретно задачу необходимо выполнить.

Выводы:

Ограничением в использовании шаговых двигателей являются мощность и соответственно скорость, однако по практике, их применение целиком оправданно в недорогих станках имеющих систему ЧПУ, предназначенных для обработки дерева, ДСП, МДФ, пластиков, легких металлов и прочих материалов средней скорости, необходимости производителей станков с ЧПУ по точности и по скорости. Если по каким-либо причинам такие параметры не устраивают, то, как правило, используют сервоприводы. Но стоит заметить, что при этом резко и, причем значительно поднимается стоимость конструкции в целом.

Если смотреть с другой стороны, то достичь реальной экономии времени обработки и даже при скоростных сервоприводах, можно за счет экономии на переходах и соответственно оптимизации путей обработки. В остальное же время, скорость весьма ограничена – режимами резки. Между деталью и приводом есть еще и фреза о чем часто забывают.

Достоинства сервопривода таковы, что использовать их можно было бы постоянно, когда только возможно, конечно если бы не два существенных недостатка: цена самого комплекта (т. е. блок управления + сервомотор) и сложность настройки, которая временами делает применение сервопривода совершенно – необоснованным.

В каких случаях необходимы сервоприводы:

  • При скоростных раскроях материала «листового» (скорость перемещения инструмента более чем 25 метров в минуту). Следовательно, в таком случае целесообразно приобретать именно «раскроечный» станок с достаточно мощным шпинделем (до 5 кВт) и с цангой под большой инструмент, с вакуумным столом, с системой удаления стружки и, конечно же, с сервоприводами.
  • При производстве матриц и форм с претензионной точностью изготовления. В данном случае больше всего подходит фрезерный обрабатывающий центр, который можно заказать у компании INTERLASER.

В остальных же случаях наиболее чаще приобретают машины именно с шаговыми двигателями – просто это наиболее практичнее.

Новости

Внимание! Новинка! Высокоточный лазерный станок CCD IL-6090 SGC (с камерой), оснащенный усовершенствованной системой оптического распознавания объектов. Благодаря современному программному обеспечению и высококачественным комплектующим, станок способен самостоятельно распознавать и сканировать необходимые объекты из множества представленных, после чего вырезать их в заданных границах по необходимым параметрам.

Добрый день! Компания INTERLASER, сообщает Вам о огромном поступлении линз, зеркал для лазерного оборудованияЦены самые низкие на линзы и зеркала:Линзы для лазерных станков ZnSe (США):диаметр 20, фокус 2 (50.8 мм) - 3 304 рубдиаметр 20, фокус 5 (12.7 мм) - 3 304 рубдиаметр 25, фокус 2.5 (63.5 мм) - 7 350 руб Линзы для лазеров ZnSe (Китай):диаметр 20, фокус 2 (50.8 мм) - 2 450 рубдиаметр 20, фокус 5 (127 мм) - 2 450 рубдиаметр 25, фокус 2.5 (63.5 мм) - 4 900 руб Зеркала:диаметр 20 мм, толщина 2/3 мм - 840 рубдиаметр 25 мм, толщина 2/3 мм - 980 рубдиаметр 30...

Рассмотрим на этом занятии устройство и принцип работы сервоприводов. Разберем два простых скетча для управления сервоприводом с помощью потенциометра на Ардуино. Также мы узнаем новые команды в языке программирования C++ — servo.write , servo.read , servo.attach и научимся подключать в скетчах библиотеку для управления сервоприводами и другими устройствами через Ардуино.

Устройство сервомотора (servo)

Сервопривод (сервомотор) является важным элементом при конструировании различных роботов и механизмов. Это точный исполнитель, который имеет обратную связь, позволяющую точно управлять движениями механизмов. Другими словами, получая на входе значение управляющего сигнала, сервомотор стремится поддерживать это значение на выходе своего исполнительного элемента.

Сервоприводы широко используются для моделирования механических движений роботов. Сервопривод состоит из датчика (скорости, положения и т.п.), блока управления приводом из механической системы и электронной схемы. Редукторы (шестерни) устройства выполняют из металла, карбона или пластика. Пластиковые шестерни сервомотора не выдерживают сильные нагрузки и удары.

Сервомотор имеет встроенный потенциометр, который соединен с выходным валом. Поворотом вала, сервопривод меняет значение напряжения на потенциометре. Плата анализирует напряжение входного сигнала и сравнивает его с напряжением на потенциометре, исходя из полученной разницы, мотор будет вращаться до тех пор пока не выравняет напряжение на выходе и на потенциометре.


Управление сервоприводом с помощью широтно импульсной модуляции

Как подключить сервопривод к Ардуино

Схема подключения сервопривода к Arduino обычно следующая: черный провод присоединяем к GND, красный провод присоединяем к 5V, оранжевый/желтый провод к аналоговому выводу с ШИМ (Широтно Импульсная Модуляция). Управление сервоприводом на Ардуино достаточно просто, но по углам поворота сервомоторы бывают на 180° и 360°, что следует учитывать в робототехнике.

Для занятия нам понадобятся следующие детали:

  • Плата Arduino Uno / Arduino Nano / Arduino Mega;
  • Макетная плата;
  • USB-кабель;
  • 1 сервопривод;
  • 1 потенциометр;
  • Провода «папа-папа» и «папа-мама».

В первом скетче мы рассмотрим как управлять сервоприводом на Arduino с помощью команды myservo.write(0) . Также мы будем использовать стандартную библиотеку Servo.h . Подключите сервомашинку к плате Ардуино, согласно схеме на фото выше и загрузите готовый скетч. В процедуре void loop() мы будем просто задавать для сервопривода необходимый угол поворота и время ожидания до следующего поворота.

Скетч для сервопривода на Ардуино

#include Servo servo1; // объявляем переменную servo типа "servo1" void setup () { servo1.attach (11); // привязываем сервопривод к аналоговому выходу 11 } void loop () { servo1.write (0); // ставим угол поворота под 0 delay (2000); // ждем 2 секунды servo1.write (90); // ставим угол поворота под 90 delay (2000); // ждем 2 секунды servo1.write (180); // ставим угол поворота под 180 delay (2000); // ждем 2 секунды }

Пояснения к коду:

  1. Стандартная библиотека Servo.h содержит набор дополнительных команд, которая позволяет значительно упростить скетч;
  2. Переменная Servo необходима, чтобы не запутаться при подключении нескольких сервоприводов к Ардуино. Мы назначаем каждому приводу свое имя;
  3. Команда servo1.attach(10) привязывает привод к аналоговому выходу 10.
  4. В программе мы вращаем привод на 0-90-180 градусов и возвращаем в начальное положение, поскольку процедура void loop повторяется циклично.

Управление сервоприводом потенциометром


Подключение сервопривода и потенциометра к Ардуино Уно

Ардуино позволяет не только управлять, но и считывать показания с сервопривода. Команда myservo.read(0) считывает текущий угол поворота вала сервопривода и его мы можем увидеть на мониторе порта. Предоставим более сложный пример управления сервоприводом потенциометром на Ардуино. Соберите схему с потенциометром и загрузите скетч управления сервоприводом.

Скетч для сервопривода с потенциометром

#include // подключаем библиотеку для работы с сервоприводом Servo servo; // объявляем переменную servo типа "servo" void setup () { servo.attach (10); // привязываем сервопривод к аналоговому выходу 10 pinMode (A0, INPUT); // к аналоговому входу A0 подключим потенциометр Serial .begin (9600); // подключаем монитор порта } void loop () { servo.write (analogRead (A0)/4); // передает значения для вала сервопривода Serial .println (analogRead (A0)); // выводим показания потенциометра на монитор Serial .println (analogRead (A0)/4); // выводим сигнал, подаваемый на сервопривод Serial .println (); // выводим пустую строчку на монитор порта delay (1000); // задержка в одну секунду }

Пояснения к коду:

  1. В этот раз мы присвоили имя для сервопривода в скетче, как servo ;
  2. Команда servo.write(analogRead(A0)/4) передает значения для вала сервопривода — получаемое напряжение с потенциометра мы делим на четыре и оправляем данное значение на сервопривод.
  3. Команда Serial.println (servo.read(10)) считывает значение угла поворота вала сервопривода и передает его на монитор порта.

Сервомоторы часто используются в различных проектах на Ардуино для различных функций: повороты конструкций, движение частей механизмов. Так как мотор серво постоянно стремится удерживать заданный угол поворота, то будьте готовы к повышенному расходу электроэнергии. Это будет особенно чувствительно в автономных роботах, питающихся от аккумуляторов или батареек.

Также часто читают:


У сервы 3 вывода: Питание, земля и сигнальный провод.


С помощью сигнального провода сервопривод определяет на какой угол нужно повернуться.
Сюда подаются импульсы одинаковой частоты, но разной ширины (длительности).


Чаще всего частота сигнальных импульсов 50 Гц (Период = 20 мс).При этом ширина минимального импульса 1 мс, а максимального 2 мс.
Этого должно хватить для начала, дальше будет подробней (можно не читать).

Устройство сервопривода


Выходной вал соединён с переменным резистором который и определяет угол поворота.
Потенциометр соединён с плюсом и землей по крайним выводам, а средний подключается к управляющей схеме. Получается делитель напряжения.

Подавая управляющий сигнал мы говорим к примеру что должно быть 5 вольт, плата проверяет потенциометр а там 0 значит 0 градусов и т.к. напряжение на резисторе меньше чем должно быть, управляющая плата включает мотор, который крутиться по часовой стрелке до тех пор пока напряжение на потенциометре не станет равно нужному нам.

То есть управляющая плата сравнивает заданный нами управляющий сигнал со значением напряжения на потенциометре (по своим формулам), если на потенциометре меньше чем нужно он крутиться по часовой стрелке, если меньше против часовой, до тех пор пока значения не будут равны.

Нейтральное положение это состояние сервопривода когда управляющий сигнал равен половине от суммы максимального и минимального сигнала.
То есть если минимальная ширина сигнала 1 мс а максимальная 2 мс , то нейтральное положение будет когда сигнал имеет длину 1.5 мс . Обычно в этом состоянии угол равен 90 градусов.

Мотор часто имеет большую скорость вращения, но слабый крутящий момент - не может поднимать тяжелые грузы. Из-за этого используют редуктор, это сборка шестерёнок которые преобразуют высокую скорость оборота мотора в медленную, но сильную скорость оборота выходного вала.

Стоит отметить что для их управления используется не PWM/ШИМ (Pulse Width Modulation) или PPM (Pulse Position Modulation). А — PDM (Pulse Density Modulation).

Теперь остались только характеристики сервоприводов и их отличия друг от друга.

Характеристики


Момент / Крутящий момент / Сила поворота

Указывают для 2 значений напряжения 4.8 В и 6 В. Показывает какой груз серва может выдержать в неподвижном состоянии. Момент в 15 кг/см означает что сервопривод способен удержать неподвижно рычаг в 1 см и подвешенным к нему грузом массой 15 кг либо же удержать груз в 1 кг на рычаге в 15 см.

Скорость поворота

Скорость сервоприводов измеряется временем поворота рычага сервопривода на угол 60 градусов при напряжении питания 4.8 В и 6 В. Например, сервопривод с параметром 0.06с/60° поворачивает вал на 60 градусов за 0.06с.

Форм фактор / Размер

Сервоприводы различаются по размерам. И хотя официальной классификации не существует, производители давно придерживаются нескольких размеров с общепринятым расположением крепёжных элементов. Их можно разделить на:

Микро: 24мм x 12мм x 24мм, вес: 8-10 г.

Мини: 30мм x 15мм x 35мм, вес 23-25 г.

Стандарт: 40мм x 20мм x 37мм, вес: 50-80 г.

Гигант: 4 9мм x 25мм x 40мм, вес 50-90 г.



Тип редуктора / Материалы шестерней

Шестерни для сервоприводов бывают из разных материалов:

пластиковые, карбоновые и металлические.

Пластиковые самые дешевые, легкие, не прочные, остальные 2 прочнее, дороже, крепче.

Выходной вал скользит с помощью подшипников, шариковые используются в мощным сервах, но со временем появляется люфт.

Виды моторов

Мотор с сердечником самый обычный мотор постоянного тока с проволочной обмоткой из проволоки по центру (крутиться) и постоянными магнитами по бокам (крутиться).

Вибрирует, медленно разгоняется и останавливается.

Мотор без сердечника Постоянный магнит в центре (неподвижен) и обмотка вокруг в форме цилиндра (крутиться).

Нет недостатков как у мотора с сердечником, но дороже.

Еще есть сервы с бесколлекторным мотором, они лучше и дороже остальных. Но не распространены.

Аналоговые и Цифровые

У цифровых есть микропроцессор, они работают на большой частоте из-за этого улучшается точность и пропадают мертвые зоны. Но он потребляет больше тока и дороже.

Мертвые зоны происходят при малом отклонении сервопривода, на мотор подается слабый сигнал и он не способен вернуть серву в прежнее состояние, чем больше отклонение тем сильнее сигнал, так что далеко он не покрутиться, но погрешность всё же есть.

Для общего образования


Привод — совокупность устройств, предназначенных для приведения в действие машин. Состоит из двигателя, трансмиссии и системы управления.
Двигатель (мотор) — устройство, преобразующее какой-либо вид энергии в механическую.
Трансмиссия — совокупность сборочных единиц и механизмов, соединяющих двигатель (мотор) с ведущими колёсами транспортного средства (автомобиля) или рабочим органом станка. В общем случае трансмиссия предназначена для передачи крутящего момента от двигателя к колёсам (рабочему органу), изменения тяговых усилий, скоростей и направления движения.
Система управления — систематизированный (строго определённый) набор средств сбора сведений о подконтрольном объекте и средств воздействия на его поведение.

Сервопривод (следящий привод) - привод с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения.
Сервоприводом является любой тип механического привода (устройства, рабочего органа), имеющий в составе датчик (положения, скорости, усилия и т. п.) и блок управления приводом (электронную схему или механическую систему тяг), автоматически поддерживающий необходимые параметры на датчике (и, соответственно, на устройстве) согласно заданному внешнему значению (положению ручки управления или численному значению от других систем).
Материал из Википедии - свободной энциклопедии

Сервопривод - это система привода, которая в широком диапазоне регулирования скорости обеспечивает динамичные, высокоточные процессы и обеспечивает хорошую их повторяемость. Это система, предназначенная для отработки момента, скорости и позиции с заданной точностью и динамикой. Классический сервопривод состоит из двигателя, датчика позиции и системы управления, имеющей три контура регулирования (по позиции, скорости и току).

Слово «серво» произошло от латинского слова «servus», что переводится как слуга, раб, помощник. В машиностроительных отраслях они были преимущественно вспомогательными приводами (приводы подач в станках, приводы роботов и т.п.). Однако сегодня ситуация изменилась, теперь и главные приводы реализуются с использованием сервотехники.

В настоящее время, сервоприводы применяются там, где недостаточно точности регулирования обычных общепромышленных преобразователей частоты. Применение высококачественных сервоприводов необходимо в высокопроизводительном оборудовании, где главным критерием является производительность. Сервоприводами оснащаются прецизионные системы поддержания скорости и позиционирования промышленных роботов и высокоточных станков. Сервоприводы также устанавливаются на координатно-сверлильных станках, на различных технологических транспортных системах, на различных вспомогательных механизмах и др. В приводах подач современных станков с ЧПУ обеспечивающих перемещения рабочих органов станка, на сегодняшний день применяются в основном шаговые двигатели, либо сервоприводы .

Универсальный сервопривод

Универсальный сервопривод характеризуется богатым набором функций, возможностью управления серводвигателями различного типа (как синхронными, так и асинхронными), возможностью работы с различными датчиками обратной связи, а также наличием ряда опций и расширений. Рассмотрим универсальный Сервопривод на примере KEB F5-Multi (Германия) и Control Techniques Unidrive SP. (Англия)

Сервопривод на базе KEB F5-Multi

Сервопривод КЕВ" align="RIGHT" width="20%" border="0">

Контроллер элеткропривода с контуром обратной связи для синхронных и асинхронных двигателей. Специально разработан для для работы в замкнутом контуре, возможны ращличные варианты обратной связи с:

    резольвером

    энкодером

    Sin-Cos датчиком положения

    абсолютным датчиком положения

    EnDat, Hiperface или тахогенератором

Основные возможности и характеристики:

    широкий диапазон мощностей

    напряжение питания 220 или 380 В

    возможно питание постоянным током

    бессенсорное управление двигателем

    гальванически развязанные аналоговые и цифровые входы/выходы

    релейные и транзисторные программируемые выходы

Возможна реализация концепции децентрализованного управления системой приводов, благодаря наличию:

    регулирования скорости вращения и вращающего момента

    управления позиционированием

    режимов согласованного вращения

Кулачковых переключателей

Электронного кулачкового диска

Одноосевого позиционирования

Позиционирования поворотного стола

Все привода поддерживают последовательные интерфейсы Profibus, CAN, Sercos, InterBus, DeviceNet, Modbus, Ethernet, Ethercat, Powerlink, Profinet и KEB-HSP5 / DIN 66019-II.


Исполнительный и специальный Сервопривод

Исполнительный сервоприод работает под управлением контроллера движения, имеет ограниченный набор функций и настроек, прост в работе. В следствии этого исполнительный сервоприод является более экономичным. Рассмотрим исполнительные cервоприводы на примере синхронных cервоприводов Mecapion.

Исполнительный сервопривод Mecapion

Синхронные Сервоприводы Mecapion (ex. Metronix) - базовый продукт для системных решений в области промышленной автоматизации давно знакомый российским потребителям.

Основные особенности cервоприводов Metronix

    диапазон мощностей от 0,03 до 11 кВт

    встроенный комплект рекуператора, позволяющий возвращать энергию в сеть, и встроенный ключ сброса энергии при динамических торможениях

    тестовый режим работы преобразователей частоты

    функции устранения вибраций при вращении двигателя и его останове позволяют исключить работу преобразователя частоты в колебательном режиме как при наладке, так и в эксплуатации

    возможность использования как относительных, так и абсолютных инкрементальных датчиков положения

    выбор режима работы системы управления - управление по скорости или по моменту

    наличие расширенного пакета программного обеспечения позволяет легко и быстро менять функции преобразователя частоты и решать на его базе различные технические задачи (в т. ч. по реализации управления приводами подачи)

    наличие в линейке продукции Metronix двигателей с полым валом позволяет исключить из кинематической схемы промежуточное устройство - соединительную муфту

    программируемые выходы позволяют строить системы с высокой степенью защиты от различных нештатных ситуаций и с максимальной информативностью для оператора

Серия VS - стандартная общепромышленная, реализует управление по скорости, моменту (±10 В) и положению (step/dir).

Преобразователи частоты серии VS могут работать в следующих режимах:

    управление позицией при использовании внешнего контроллера, задающего последовательность импульсов.

    управление скоростью по аналоговому входу или дискретным входам.

    управление моментом по аналоговому входу в режиме ограничения максимального момента.

    управление скоростью/позицией.

    управление скоростью/моментом.

    управление позицией/моментом.

Специальная серия VP предназначена для выполнения специальных задач:

    линейно-координатное позиционирование с возможностью выбора до 64 позиций шестью дискретными входами (VP1), типичная сфера применения - обеспечение линейного перемещения в системах с трансмиссией на ШВП

    угловое позиционирование с возможностью выбора до 32 позиций пятью дискретными входами (VP2), типичная сфера применения - поворотные столы, роторные конвейерные линии, устройства автоматической смены инструмента и т. п.

    позиционирование с использованием подачи дотягивания (VP3), типичная сфера применения - упаковочные машины, всевозможные виды подающих устройств с позиционированием как по сигналу с энкодера на валу двигателя, так и по по метке внешнего дискретного датчика

    программируемое пошаговое позиционирование с возможностью выбора до 8 программ тремя дискретными входами (VP5), каждая программа может иметь до 100 шагов (позиций), сохраняемых в памяти преобразователя частоты

    для связи преобразователя частоты VS и персонального (промышленного) компьютера используется встроенный СОМ-порт, при необходимости через конвертор RS232/RS485 преобразователи частоты можно объединить в сеть

Интегрированный Сервопривод

align="RIGHT" width="30%" border="0">

Главной отличительной чертой, а так же подавляющим преимуществом, интегрированного cервопривода является заключение двигателя, контроллера, датчика обратной связи и преобразователя частоты в едином корпусе. Что сводит к минимуму монтажные операции, упрощает подключение и настройку, сокращает время на отладочные работы, значительно экономит место, а так же положительно сказывается на стоимости cервопривода .

На российском рынке уже успели себя отлично себя проявить и зарекомендовать отечественные интегрированные шаговые cервоприводы СПШ .

    бесшаговое (векторное) управление на основе адаптированного для шаговых двигателей алгоритма

    высокие динамические показатели за счет использования замкнутых контуров регулирования токов в обмотках двигателя

    использование замкнутых контуров скорости

    низкая вибрация за счет динамически регулируемого усилия

    продуманная конструкция и простой монтаж

    компактные размеры и небольшая масса

Режимы работы cервопривода СПШ

Динамический - управляющий сигнал от контроллера верхнего уровня передается через цифровой интерфейс в режиме реального времени. Динамический режим используется в системах, требующих контурного управления (например, в манипуляторах со сложной кинематикой и координатных столах для точного позиционирования).

Аналоговый - управление по скорости сигналом ±10 В. Данный режим позволяет использовать привод для модернизации оборудования с аналоговыми системами управления или для управления вручную (например, с помощью штурвала).

Циклический - выполнение запрограммированных контроллером верхнего уровня и сохраненных в памяти привода циклических операций. В ряде случаев это позволяет исключить внешний контроллер верхнего уровня или СЧПУ. Циклический режим используется, например, на конвейерах и в несложных сборочных операциях.

Сетевой - данный режим позволяет пользователю строить распределённые сервосистемы на основе цифрового интерфейса CAN, реализовывать синхронное или последовательное перемещение нескольких осей. В этом случае также возможно использование режима «master-slave», в котором ведомый привод работает в режиме повторителя положения вала ведущего.

Похожие статьи